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A discrete stochastic model is used to derive analytic expressions for various quantities relating to
photon transport through an optically turbid slab. Several theoretical predictions, including those of the
distributions of total path length, diffuse surface reemissions, and time-resolved point intensities, are ex-
amined by comparison with Monte Carlo simulations of a continuous-random-walk model of photon mi-
gration through a semi-infinite medium of finite thickness.
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I. INTRODUCTION

In recent years considerable effort has been expended
to develop optical techniques for medical diagnosis or
therapy. Indeed, laser sources now are widely employed
as surgical tools for excising, disrupting, or coagulating
tissue [1,2]. Other widely investigated applications in-
clude photodynamic cancer therapy [3,4], measurement
of microcirculatory blood flow [5], and blood pulse ox-
imetry [6]. Lately much attention also has been given to
devising methods for tomographic imaging of tissues,
whereby nonionizing visible or near-visible radiation
might be used to detect tumors [7,8] or to monitor phy-
siological status such as regional blood oxygenation
[9,10].

In order to effectively apply such techniques it is desir-
able to develop models for photon trajectories which,
while possibly not representing underlying physical pro-
cesses in precise detail, nevertheless are useful when
determining dosimetry or analyzing spectroscopic data.
Physical descriptions of light propagation in optically
turbid media already have been developed at a number of
levels of complexity. The classical approach, originally
directed towards applications in astronomy, is based on
transport theory but many useful features of photon dis-
tributions are equally well understood in terms of simpler
phenomenological models [11,12]. Examples include
diffusion [12,13] and random-walk models [14]. Simula-
tion methods also have been applied extensively to this
class of problems [15,16].

One advantage of the random-walk models has been
their ability to produce relatively simple mathematical
expressions for various quantities of interest. Our own
applications of random-walk models mostly involve cal-
culations of photon reemissions at an illuminated surface
of thick tissue [14,17—19]. Of these, one important class
of problems for remote sensing concerns intensity profiles
of surface reemitted photons, measured as a function of
the distance from the point of incidence of a continuous
source. A second group relates to the case where light is
injected as a pulse and information is obtained from the
time distribution of the reemitted photons [9,10] or, in
the frequency domain, the phase shift of a diffusive wave
[20-22].

In our previous investigations the tissue was modeled
as an infinitely thick homogeneous bulk medium. The
present paper concerns reflection from, and transmission
through, a slab of finite thickness. We begin, in Sec. II,
by analyzing a random walk on an isotropic scattering
lattice bounded by two absorbing planes. Expressions for
path-length distributions, diffuse emission intensity
profiles, and mean transit times are derived for both
reflected and transmitted photons. Exact formulas for
the path-length distributions are obtained which can be
applied even when the thickness of the slab is only a few
times the optical mean free path. We also derive variants
of those expressions that are analytically somewhat more
tractable. The latter are good approximations to the ex-
act solutions when the slab is thick.

In Sec. III we present simulated Monte Carlo data re-
lating to several of the derived analytical expressions.
Particular attention is given to path-length distributions
for relatively thin slabs, for which short-path photons can
be of great importance. One motivation for this work has
been to discern the circumstances under which formulas
based on diffusion theory might fail to adequately
represent the random walks of the photons [23]; hence, in
addition to comparing simulated data with curves calcu-
lated by our random-walk theory, similar comparison is
made with curves obtained from commonly used expres-
sions derived from diffusion theory [13].

Results are discussed in Sec. IV. We also include a
brief discussion of the effect of redefining lattice parame-
ters in terms of transport-corrected scattering and ab-
sorption coefficients in order to account for scattering-
angle anisotropy. An Appendix contains a compilation
of random-walk-model expressions which have been
rewritten in terms of real space-time variables.

II. THEORY

Our model essentially involves describing photon mi-
gration in an optically turbid medium by a discrete-time
random walk on an isotropic scattering lattice. The sepa-
ration between two neighboring lattice points represents
the physical distance that a photon travels, on average,
before its direction is randomized. We derive the joint
probabilities that a photon emerges at a distance p on a
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surface after n lattice steps, where p measures the axial
distance from the point of insertion to the point of ree-
mission. The latter is expressed in terms of a lattice unit
given, for an exponential scattering-length dlStI‘lbuthn,
as the root-mean-square of scattering length \/22
where X is an appropriate ‘“‘transport-corrected” scatter-
ing coefficient [19,24]. For a finite slab, which is the
focus of this paper, one can derive the joint probabilities
in reflection and transmission after taking appropriate
boundary and initial conditions into account.

The surfaces of the slab are represented by two infinite
planes at z =0 and z =L, where L is the thickness defined
in units of lattice spacing. In both cases (reflection and
transmission) one has to calculate the probability Q, (r)
that the photon is at r=(x,y,z) at step n [14]. The two

surfaces, z =0 and z =L are absorbing, so Q,(r) is sub-
ject to the boundary conditions
Q,(x,»,0)=0,(x,y,L)=0 . (1)
The initial condition is specified as
Q,(r)=8,08,08,1 » )
where §;; is a Kronecker delta, which means that photons

are inserted normal to the surface and that randomiza-
tion of direction occurs only after the first step. The
0, (r) can be expressed in terms of the Green’s function
for random walks taking place on a fully infinite lattice,
i.e., P,(x,y,z|x',y",z"), which is the probability that a
photon initially at (x',y’,z’) is at (x,y,z) at step n. P,(r)
is known from the theory of lattice random walks [25] to
be given as

1 T T T
Pn(r)= (277,)3 f_wf_ﬂf,ﬂ,e

where A(6)=A(6,,0,,0;) is the structure factor of the
random walk (the ‘“‘characteristic function), defined in
terms of the single-step displacement probabilities {p(j)}
as

—ilr0)n(9)d0,d0,d0; , (3)

—i(x0,+y0,)

szf

y(n,p)= {e

—i[(2k+1DL—2)0;

AMO)=Ip(jle 10O )

For an isotropic random walk on a Cartesian lattice,
p (j)=1 in all directions, and A(6) is given as

A(0)=1(cosh; +cosh,+cosh;) . (5)

Two probability distributions are of primary interest
for a finite slab. The first is the probability that a random
walker is absorbed at a point (x,y,0) on the z =0 surface,
given that it has not previously reached the plane z =L;
the second is the probability that a random walker is ab-
sorbed at a point (x,y,L) on the z =L surface, given that
it has not previously returned to the plane z =0. Since
z=0 and z =L are perfectly absorbing boundaries, one
can use the method of images [26] to show that Q, can be
expressed as

©

Q2,(p)= X

k=—oco

{P,_1(p,z—1+2KL)

—P,_\(p,z+1+2kL)}e .  (6)

Optical absorption is taken into account through the
term e #", where p is defined as the absorption
coefficient per step. (The underlying assumption is that
Beer’s law applies to photon absorption in the medium.)
The joint probabilities, I'g (n,p) and I'r(n,p), which
are, respectively, the probabilities that a photon emerges
at the distance p=(x2+y?)!”? on the surface z=0 and

z =L after n steps (reflection and transmission), can be
derived by setting

F ( ,P 6Qn——1(x7y7 # (7)
and

Lr(np)=10, (x,p,L —1)e ¥ . (8)

When one replaces Q, _(x,y,L —1), for example, by the
expressions given in Egs. (3) and (6), the joint probability
in the transmission mode, I" -(n,p), can be derived as

—i[(2k +1)L16,

J

X [4(cos8,+cos6,+cos65)]" "2d6,d6,d 6, . 9)

Before we reduce Eq. (9) to a different form, let us first examine an analogous expression for the unconditioned proba-
bility distribution, I'(n). The latter is the distribution of step lengths for those photons that are transmitted through
the slab regardless of where they exit along the surface. This quantity is derived from Eq. (9) according to

§ i Cr(n,p)

x=—c0p=—o0
© 6, '
w > f f f z ];ws S—m
X{e—[(ZkH)L 20 o TR VIS 1 1 (6080, +cosO,+c0s03)]" “2d6,d0,d0;  (10a)
when, in order to obtain Eq. (10a), we observed that the sums over x and y can be expressed as
Se__elmi=s«=__ 5(8,/2m—m), where 8( ) is the Dirac delta function. Because only the m =0 and m'=0 terms

contribute to the integral given in Eq. (10a), I

r(n) can be rewritten as



812 GANDJBAKHCHE, WEISS, BONNER, AND NOSSAL 48

)

—pn . _
FT(n)zelTw TS (e ilEKHDL=200_, —il2k DL 1(2 4 00s0)]" 20 . (10b)
=

©

Thus, if we again use the identity 37— _ e/ ?tk0=3=_

tion OL /7 =v, we find that I" +(n) can be expressed as

_ 8(6L /m—m) and then perform the coordinate transforma-

_e " rL i divw/L_ < L n—2
rin)=<— f_Le (e 1) S 8 —m){L[2+cos(mv/L)]}" 2dv . (10¢c)

m = — oo

Finally, after performing the integration and after rearranging terms, we obtain the following expression for the step-
length distribution I" 7.(n):
e Hn L

Tr(n)== S (—1)" [ 1—cos(27m /L)]{L[2+cos(mm /L)]}" 72 . (11a)
m=1

Because on this lattice all steps are of equal length, I'.(n) in this case is equivalent to the path-length distribution of
transmitted photons. Note that a useful correlate to Eq. (11a) can be obtained, for large values of n, by making the
Gaussian approx1mat10n ($[2+cos(mm /L)])"=exp(—nm 272 /6L %), in which case Eq. (11a) becomes

T p(n) yn 11 —cos(2mm /L)]e ~(n —2mm/6L? (11b)

An equivalent formula, derived by using the Gaussian approximation earlier in the derivation, is
1/2
1 > {e7[3/2(n~2)][2k+1)L—2]2_e—[3/2(n—2)][(2k+1)L]2}e7yn ) (11¢)

U~ Samtn—2)

k=—o

We now observe that the expression for I' +(n,p), given by Eq. (9), can be reduced by similar procedures. One finds, in
analogy with Eq. (11a),

I'r(n,p)= 6L(2 3f f“”k_z—m mz_l 1—cos(2mm /L)]{e

—i[2k+1L—2]8;  —i[(2k +1)L]6,
—e

J

X {L[cosB, +cosf,+cos(mm /L)]}" ~2d6,d6, . (12a)

The integrals in this expression are easily performed if we first make the approximation, valid for large n, that

(L[cosB,+cos,+cos(mm /L))" “*~exp(—[(n —2)/6][61+63+m>7>/L?]). In this case Eq. (12a) takes the form
e Hn L oy 3 2 1 a2
m+1 (n—2)m3a? /6L 3p“/2(n—2)
Ty(n,p)= L - 2 ( 1) {[1—cos(2mm /L)]}e™ n—2)¢ . (12b)

As expected, the result given in Eq. (11b) is found by integrating I (n,p), as given by Eq. (12b), over 2mp dp.
The expression given in Eq. (12b) may be written alternatively as [cf. Eq. (11c)]

3/2
o —307/2n—2) §

k=—o

1

V3|1
2m(n —2)

2

3 [(2k+1)L 2]
2 n—2

3 [Qk+1L)?
2 n—2

Lr(n,p)= exp s

(12¢)

An expression for T';(p), which is proportional to the total amount of energy emitted in a ring defined by the radii p
and p+dp, can be obtained by integrating Eq. (12c) over n. We find

—2u ©

_ €
FT(p)_ 477_ kzz_w

(13)

e‘(6,u{p2+[(2k+1)L—2]2})1/2 e—(ep{p2+[(2k+1u_]2})“2
Vpr+[(2k +1)L —2)? Vp?+[(2k +1)L)?

Then, the total amount of energy absorbed at z =L can be obtained by integrating Eq. (13) over p, which yields the fol-
lowing expression for the transmittance Ty(u) of a finite slab,

—2un — —_
To(w)=-2 —Véul|2k + DL —2|] _ , —V'éu[|2k +1)L|]
o\H ‘/_24#k:7w{e e }
_ e | cosh(V24u)—1
= . — (14)
V24u sinh(V'6uL)

Another quantity of interest is the expected number of steps taken by a photon before it is reemitted at surface z =L.
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This expression can be derived according to
> nCyp(n,p)
(nlp)p=""2 | 1s)
2 Trnp)
n=2
where in the continuum limit the summations can be replaced by integrations over n. One thus finds from Eq. (12c)
(nlo) J§(n+2)Tr((n +2),p)dn
n =
P A (n +2),p)dn
12 3 [exp(—aVép)—exp(—BV6u)]
H & | exp(—aVeu)  exp(—BvV6u)
P> a«

where a=V p?+[(2k +1)L —2]* and B=V p*>+[(2k +1)L1%
Analogous expressions can be obtained for photons which are emitted at the upper surface, at z =0. We find, corre-
sponding to Egs. (11a), (12¢), (13), (14), and (16), the following expressions for reflected photons: (i) For the path-length

distribution,
e THn L
Iz(n)= L > [1—cos(2mrm /L)]{1[2+cos(mm /L)]}" 2 (17a)
m=1
1 1 e 3 3
~—— ————[2kL]? |— ———————[(2k +2)L]* | |[e #"; 17b
Vs |2rn—2) | = || 2 —y PR e T LI e a7e)
(i1) for the joint distribution,
V3 1 R & 3 [2kL]? 3 [(2k +2)LT
r p)=—> —3p°/2(n —2) L Etheo i B 2 L\er T e —pn . 1
r(n,p) 2 | 2mn—2) e k=2—w exp |~ exp | =3 " —2 e ; (18)
(iii) for the intensity distribution
oM ® e~ Voup +2kLP)  ,—Veulp?+[(2k +2)L]
Crlp)= — (19)
4 2| VpP+[2kL]?  Vp*+[(2k +2)LT?
(iv) for the reflectance,
e ~—— , 2[1—cosh(V24u)]
Ro(u)=—"—== |1—exp(—V24p)+ . Yk 20
otf V24u P H exp(V24uL)—1 (20
and (v) for the expected step length,
3 |2 > [exp(—a'Véu)—exp(—B'Véu)]
(nlpyp=2+ |- i - — 3
H & |exp(—a’'Vieu) exp(—BV6u)
2 a’ - B/
k=—

where o' =V p?+[2kL]? and B’ =V p?+[2kL +21%
Equations (11), (12c¢), (13), (14), (16), and (17) comprise
a complete set of formulas for analyzing actual measure-
ments if the parameters used in random-walk theory, p,
n, u, can be related to real time and space variables (¢,r)
and to parameters usually used in optics such as the ab-
sorption and scattering cross sections (2, and X;). For
isotropic scattering, and when the scattering lengths are

[

exponentially distributed, appropriate transformations
are [19,24]
2,

25
p=r‘/§ P BT n=3ct=31,

s

(22)

where c is the speed of light in tissue and [ is the path
length in real space, related to the time as [ =ct. (In gen-
eral, the distance variables on the lattice, such as p, can
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be expressed as real distances divided by the root-mean-
square scattering length [14].)

Because these expressions were derived for a discrete
lattice model, they need to be modified slightly in order
that they be valid for photon migration in a continuum
space. In a continuum space photons cross the boun-
daries when they escape, whereas they are absorbed ex-
actly at z =L in a random-walk model on a discrete lat-
tice. To account for this difference one may place the
lower boundary of the slab at z =L + ¢ (where € is small),
rather than at z =L. But, on a discrete lattice, the proba-
bility of reaching L + € is equal to the probability of be-
ing at L +1. Hence, as shall be shown in the next sec-
tion, to properly account for photon migration near the
boundaries, we find that the value of L appearing on the
preceding analytical expressions must be increased by 1;
also, except for factors which account for absorption, the
step number n, too, should be increased by 1. For exam-
ple, the expression for I' (n) given by Eq. (11a) becomes,
for a continuum,

2 L+
S (=)™ (1 —cos[2mm /(L +1)])

m=1

X(L{24cos[mm /(L +1)]}) 1.

e

LriD=2T 5D

(23)

Real-variable expressions for several of the above distri-
butions are presented, below, in the Appendix.

III. SIMULATIONS

Different sets of Monte Carlo calculations were per-
formed in order to substantiate analytical results ob-
tained in the previous section. These calculations were
done for several slab thicknesses and different values of
anisotropy coefficient (g =0, 0.9). The number of simula-
tions for any particular conditions was of the order of
10%-108, which yielded statistically meaningful results
even for time-resolved distributions. Scattering lengths
here were exponentially distributed, with the mean
scattering length taken to be 1. The scattering angle was
determined from the cumulative probability distribution
of the Henyey-Greenstein phase function [27]. Details of
the Monte Carlo procedures used for these simulations
are described elsewhere [19,24].

Figure 1 shows the results of Monte Carlo simulations
of the distribution of total path lengths experienced by
photons which traverse the slab. The open circles
represent the results of simulations, and the solid lines
have been calculated from the expression for I' () given
in Eq. (23). All results shown in this figure were ob-
tained for u=0, i.e., in the absence of absorption. Figure
1(a) shows results of simulations for a continuum, for
L =10V2 where L is the thickness of the slab measured
in units of mean scattering length 3, !. The correspond-
ing analytical expression for I' (/) has been determined
for the scaled thickness L =10, related to the real dis-
tance according to Eq. (22), viz.,

L=V2L . (24)
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FIG. 1. Logarithm of the path-length distribution, I" (1), cal-
culated by Monte Carlo simulations and random-walk and
diffusion theories. (a) Slab thickness .L =10V 2. (b) Slab thick-
ness L =5V"2. Here, the absorption per unit scattering length,
1, has been set to zero. The solid lines represent values that
have been obtained from Eq. (23), based on random-walk
theory. The dashed lines have been calculated from an expres-
sion derived from diffusion theory [13]—see Eq. (25).

The evaluation of Eq. (23) is shown here by a solid line
for values of / =L, as no photons can cross the slab un-
less their total path length exceeds this minimal value;
the values of Eq. (23) for lower values of / are shown by
the thin dashed line. For comparison we indicate by the
dotted line, for .£L =10V'2, some results of calculations
based on an analytic expression derived from the optical
diffusion equation [13],

e M

1372 [(L—1)e 3LV /AL (£ 4 1) ~3L+1/4l

FT(I)N

+(3.L —1)e ~3BL-DP/4l
—(3LA+1)e ALV (25)

We find that the Monte Carlo results are represented very
well by our analytic random-walk theory. However,
whereas the diffusion theory expression given by Eq. (25)
here provides a fair approximation for large values of
path length, it fails to adequately represent I'(I) for
smaller values of /. Similar correspondences are observed
in Fig. 1(b), where I'y(I) is given for a significantly
thinner slab, £=5v"2. Note that the agreement between
the Monte Carlo data and points derived by simple evalu-
ation of Eq. (25) is much poorer, even at high values of /
(see the discussion).
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FIG. 2. Results obtained from Monte Carlo simulations of
intensity profiles, I' 7(7), for two thicknesses £ = 10v2 (0) and
L=5V2 (A). The solid lines are calculated according to
random-walk theory (u#=0.1). The cross (X) represents the
purely ballistic photons (for .L =5V'2), which are not taken into
account in the random-walk analysis.

In Fig. 2 we show intensity profiles I' (7), where
7=2ZX,r is the real distance expressed in terms of the mean
scattering length. The values of slab thickness are the
same as in Fig. 1 (L=5V'2, 10V2). Here, the value of
the absorbance per mean scattering length is taken as
pn=0.1. The circles are the results of the simulations,
and the solid lines are calculated according to Eq. (A1)
[cf. Eq. (13)]. Again, the correspondence between simula-
tion and theory is quite good, except for very small values
of » where the Monte Carlo results show the presence of
ballistic photons which leave the slab without experienc-
ing any scattering. The cross ( X ) is the value obtained by
including ballistic photons, calculated according to the
expression ' (Dypapistic =€xp[ —(1+u)L], which ac-
|

—33,r2/41

e M
15/2

N
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o
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FIG. 4. Mean path length (I|F). Results of Monte Carlo
simulations for £ =0.05 (A) and £=0.1 (O) are compared with
the theoretical expression given by Eq. (A3). (L=10V2))

log1oT'7(£,7)

0 40 80 120 160 200

FIG. 3. The distribution of path lengths, I';(/,7), for two
points 7=0.175 (OJ) and 7=6.89 (A), obtained from Monte Car-
lo simulations (L=10V2,4=0.1). The solid lines were ob-
tained from random-walk theory according to Eq. (A2); the
dashed line has been obtained from an expression derived from
optical diffusion theory [Eq. (25)]. The cross (X) represents the
ballistic photons which are transmitted when 7=0.175.

counts for the nonzero absorption assumed for this exam-
ple.

A quantity of particular interest [9,10] is the distribu-
tion of path lengths of those photons which leave at a
particular point 7,I'(/,7). Figure 3 shows the results of
Monte Carlo simulations for .£L=10v2 and px=0.1, for
two values of 7 (F=0.175 and 7=6.89). The solid lines
were obtained from Eq. (A2) [cf. Eq. (12¢)]; the dashed
line, calculated for 7=0.175, has been obtained from an
expression derived from optical diffusion theory [13],

[(L_1)8—3(1~1)2/41_(£+1)e—3(L+1)2/41+(3L_1)8—3(3L—1)2/41_(3L+1)9—3(3L+1)2/41] )

(26)

0 0.1 0.2 0.3 0.4 0.5
m

FIG. 5. Total transmission, To(u). Circles are the results of
Monte Carlo simulations; the solid line is obtained according to
the random-walk theory expression given by Eq. (A4). Slab
thickness: £ =10V'2.
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Whereas the values obtained from the random-walk ex-
pressions fit the data quite well, the diffusion-theory re-
sults again show poorer agreement at smaller values of /.
Here, as in Fig. 2, the cross ( X ) represents ballistic pho-
tons.

A related quantity, the mean path length, (I|7), is
shown in Fig. 4, for .L=10V2, for two values u=0.05
and £ =0.10. The solid lines have been calculated from
the random-walk theory expression given by Eq. (A3).
Finally, in Fig. 5, results of simulations of the total
transmission Ty(u) (also for L =10V'2) are compared
with values calculated from Eq. (A4) (solid line). In both
cases, agreement between simulations and theory again is
quite satisfactory.

IV. SUMMARY AND DISCUSSION

This work attempts to provide mathematical expres-
sions for quantities relating to the propagation of light
within a slab of an optically turbid, multiply scattering
medium. Using a discrete lattice model to describe pho-
ton transport, we derived expressions for several measur-
able quantities. These include the intensity profiles along
the external surfaces of the medium, the distribution of
path lengths of emergent photons, and reflection and
transmission coefficients. Although our derivations in-
volved dimensionless parameters such as p, n, and u, ap-
propriate substitutions, such as those presented in Eq.
(22), lead to equations with real time and space as vari-
ables. Examples of such quantities are presented in the
Appendix.

To test our analysis we performed Monte Carlo simula-
tions and compared results with the mathematical ex-
pressions. The good agreement between simulations and
theory suggests that the random-walk approach is an ap-
propriate way to investigate aspects of photon migration
in highly turbid media. The expressions given in Eq.
(11a) for the path-length distribution of transmitted pho-
tons is particularly appealing, since it includes a natural
theoretical cutoff for photons whose path lengths are
smaller than the slab thickness. This cutoff is mathemati-
cally exact for an assumed constant scattering-length dis-
tribution, although for an exponential distribution of
scattering lengths (corresponding to randomly distributed
scatterers) the natural cutoff occurs at .L instead of L [see
Eq. 24)].

Since we are dealing with an exponential distribution
of scattering lengths, there always is a finite probability
that a photon is transmitted through the slab without
having been scattered. Such photons may be discerned
for small p (Fig. 2) or small path length (Fig. 3). As pre-
viously indicated, this probability is equal to
exp[ —(14+wu).L] so, for thicker slabs, the probability of
transmitting such ballistic photons is vanishingly small.
No analytical theory for light migration can handle the
effect of all nearly ballistic photons; for certain purposes,
though, transport through slabs of small thickness can be
treated by adding the exponential term associated with
truly ballistic photons, given above, to the analytical
transport expression given by Eq. (14) (see Figs. 3 and 4).

Strictly speaking, all of the equations given in the bulk

of the paper hold only for processes involving isotropic
scattering cross sections. However, we implicitly as-
sumed that these isotropic models are generally applica-
ble if one properly redefines lattice parameters in terms of
transport-corrected parameters. Since scattering in tis-
sues is strongly peaked in the forward direction, applica-
tion of our theory requires the explicit introduction of
transport-corrected scattering and absorption coefficients
in order to take into account the effect of anisotropy.
The latter commonly are characterized in terms of the ex-
pected value of the cosine of the scattering angle
g= fgcos(G)P(B)sin(O)de, where P(6) is the scattering
angle distribution. Previously, we showed that, although
the scaling of these coefficients depends on the
scattering-length distribution [24], for exponentially dis-
tributed scattering lengths the transport corrected cross
sections are given as 2;=(1—g)2,, 2, =2 ,. This scal-
ing also commonly is used in the diffusion approximation
of transport theory [28].

Figure 6 shows the logarithm of path-length distribu-
tion, I'(/), calculated by Monte Carlo simulations for
g =0 and g =0.9. These results confirm that the (1—g)
scaling of the scattering cross section is quite adequate
for long-path photons, whereas for short-path photons
this scaling fails. This observation is in accord with our
similar finding for reflectance experiments, which sug-
gested that another scaling relation has to be used for an-
isotropic scattering of short-path photons [19]. The scal-
ing required for such photons (sometimes referred to as
“snake” photons) becomes important when one deals
with tomographic imaging systems which utilize only
prompt photons. This problem will be discussed in future
publications.

We have limited our study to the time domain, but
there is a growing interest in using frequency-domain
analysis in order to describe photon migration in turbid
media [20-22]. This goal is easily realized by taking the
Fourier transform of Eq. (12a) which can be done analyti-
cally. Furthermore, the expression for the mean path
length, Eq. (16), can be directly related to the phase shift
of a modulated diffusing wave [20].
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FIG. 6. Logarithm of the path-length distribution, I"7(/), ob-
tained from Monte Carlo simulations for two different values of
anisotropy coefficient: g =0 (0); g =0.9 (A). Slab thickness:
L=10V2.
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FIG. 7. Logarithm of the path-length distribution, I'(/).
Data points are identical to those shown in Fig. 1(b). Dashed
line pertains to the values obtained from a modified diffusion
theory expression (see text).

Finally, as we did for random-walk theory, it is possi-
ble to modify results based on the diffusion approxima-
tion in order to better fit the long-time behavior for slabs
of small thickness. The main idea is to replace the real

|

—23,/3, o

thickness of the slab by .£ +V2 and increase the time by
to=(Z,c)”!. Whereas similar adjustment of random-
walk theory (RWT) has a theoretical basis, this kind of
modification of the diffusion approximation is somewhat
arbitrary. Nonetheless, as shown in Fig. 7 where we
compare the simulated data first given in Fig. 1(b) with
the modified diffusion theory results, we see that the
long-time behaviors now agree quite well. With this
modification, the discrepancy between theory and simula-
tion is mitigated, also, for short-path photons.

APPENDIX: REAL VARIABLE EXPRESSIONS
FOR RWT RESULTS

The following are quantities derived by random-walk
theory on a lattice, but here expressed in terms of real
variables r and / (distance and path length) and bulk opti-
cal cross sections X, and =;. Note that in calculating the
curves shown in the text, 2; always was set equal to uni-
ty. In order to make explicit connection to the text
above, one should make the substitution #=X r in the
following expressions.

The diffuse intensity of transmitted photons, expressed
as a function of real distance r from the optical axis, is
given as [cf. Eq. (13)]

exp(—32, 3, {r2+[(2k +1)d'—2V2Z1]?})1/2

rpr=—-———
T V23 2,

(r2+[(2k +1)d'—2v23 [ 11?}1/2
exp(—33, 3, {r2+[(2k +1)d']*})'/?

(A1)

(r2+[2k +1)d'?}1?
In Eq. (A1), the symbol d’ represents the corrected thickness of the slab, which is related to the actual thickness d by

the expression d’'=d +v 23, .

Similarly, the path-length distribution of transmitted photons which emerge from the scattering medium at point r is

given as [cf. Eq. (12¢)]

Lol )= V332 1 32 s iz
L 2 2m(2,1—2)
o 3 [(2k +1)d’'—2V23 1P
X exp | ——
DT bl I—23"

! (A2)

’

3 [(2k +1)d']? ]
Cexp |- 312k Dd']

4 ]—237!

and the expected value of the path length may be expressed as [cf. Eq. (16)]

i {exp[ — 4 (rV/32,2,]—exp[ —B(r)V'33,3,]}

172
(nlp)p=2571+ | =2 ke — ., (A3)
’ 42, © | exp[—A(r/32,3,] expl—B(rI33,3,]
PRl A(r) B(r)
where 4 (r)=(r2+[(2k +1)d’'—2V237'1%)""2 and B (r)={r?+[(2k +1)d']*}'/2.
Finally, the expression for the transmission takes the form [cf. Eq. (14)]
—23 /= AS /S
«/% | cosh(1/24%,/3,)—1
e ‘/ a s (A4)

To(3,,3, )=

V243, /3, sinh(1/3%,3.d")
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